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A B S T R A C T

Purpose
Germline TP53 variation is the genetic basis of Li-Fraumeni syndrome, a highly penetrant cancer
predisposition condition. Recent reports of germline TP53 variants in childhood hypodiploid acute
lymphoblastic leukemia (ALL) suggest that this type of leukemia is another manifestation of Li-
Fraumeni syndrome; however, the pattern, prevalence, and clinical relevance of TP53 variants in
childhood ALL remain unknown.

Patients and Methods
Targeted sequencing of TP53 coding regions was performed in 3,801 children from the Children’s
Oncology Group frontline ALL clinical trials, AALL0232 and P9900. TP53 variant pathogenicity was
evaluated according to experimentally determined transcriptional activity, in silico prediction of
damaging effects, and prevalence in non-ALL control populations. TP53 variants were analyzed for
their association with ALL presenting features and treatment outcomes.

Results
We identified 49 unique nonsilent rare TP53 coding variants in 77 (2.0%) of 3,801 patients se-
quenced, of which 22 variants were classified as pathogenic. TP53 pathogenic variants were
significantly over-represented in ALL compared with non-ALL controls (odds ratio, 5.2; P , .001).
Children with TP53 pathogenic variants were significantly older at ALL diagnosis (median age, 15.5
years v 7.3 years; P, .001) and were more likely to have hypodiploid ALL (65.4% v 1.2%; P, .001).
Carrying germline TP53 pathogenic variants was associated with inferior event-free survival and
overall survival (hazard ratio, 4.2 and 3.9; P, .001 and .001, respectively). In particular, children with
TP53 pathogenic variants were at a dramatically higher risk of second cancers than those without
pathogenic variants, with 5-year cumulative incidence of 25.1% and 0.7% (P , .001), respectively.

Conclusion
Loss-of-function germline TP53 variants predispose children to ALL and to adverse treatment
outcomes with ALL therapy, particularly the risk of second malignant neoplasms.

J Clin Oncol 36:591-599. © 2018 by American Society of Clinical Oncology

INTRODUCTION

Encoded by the TP53 gene, transcription factor p53
plays a central role in cell cycle, DNA repair, and
apoptosis,1-3 andmutations in this tumor suppressor
gene are promiscuously associated with a variety
of cancers in both adults and children.4,5 Loss-
of-function germline genetic variation in TP53
results in a rare familial cancer predisposition
condition, known as Li-Fraumeni syndrome (LFS),

with autosomal-dominant inheritance of cancer
phenotypes.6,7 Approximately 50% of individuals
with LFS will develop cancer by age 30 years, with
a lifetime risk of up to 75% in men and almost
100% in women.6,8,9 The most common malig-
nancies that occur in LFS include breast cancer,
sarcomas, and brain tumors, whereas leukemias are
relatively uncommon10; however, recent reports
have also implicated germline TP53 variation in the
pathogenesis of hypodiploid acute lymphoblastic
leukemia (ALL) in children.11-13
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ALL is the most common cancer in children, and there is growing
evidence for inherited susceptibility to this malignancy.14,15 For ex-
ample, common germline genetic polymorphisms that affect genes that
are involved in lymphoid development and tumor suppression—for
example,ARID5B,16,17 IKZF1,16,17CEBPE,17GATA3,18,19CDKN2A,20,21

BMI-PIP4K2A,22 and TP6323—have been associated with the risk
of developing ALL in an age- and subtype-specific fashion. Re-
cently, we and others have reported rare germline variants in ETV6,24

PAX5,25 and SH2B326 in familial ALL, with high but incomplete
penetrance. Whereas TP53 alterations are generally rare in ALL,
they are almost universally present in the low hypodiploid subtype of
ALL, approximately 50% of which are germline in nature.11 These
observations suggest that this subtype of ALL might be a manifes-
tation of LFS, but also raise the question of whether additional ALL
predisposition variants in TP53 exist and the extent to which they
contribute to ALL risk in general.

Although childhood ALL is highly curable with contemporary
risk-stratified combination chemotherapy, relapse still occurs in up
to 20% of patients, most of whom eventually succumb to disease
despite salvage chemotherapy and/or hematopoietic stem cell
transplant.27-30 Even for children who achieve long-term remission,
ALL therapy is associated with acute and late toxicities, including
the development of treatment-related second cancers.31-34 Given the
importance of TP53 in tumor suppression and tumor drug response,
we hypothesized that function-altering genetic variants in the TP53
gene would predispose children to adverse outcomes of ALL therapy.

In this study, we performed a comprehensive screening of
TP53 germline variation in children who were enrolled in na-
tionwide frontline ALL trials to identify leukemia risk variants in
this gene and evaluate their association with clinical features and
treatment outcomes.

PATIENTS AND METHODS

Study Design and Participants
TP53 targeted sequencing cohort consisted of 3,801 children with

newly diagnosed B-cell ALL who were enrolled in two consecutive Chil-
dren’s Oncology Group (COG) frontline trials (Table 1 and Data Sup-
plement): AALL023235 (ClinicalTrials.gov identifier: NCT00075725) and
P990036 (P9904, ClinicalTrials.gov identifier: NCT00005585; P9905,
ClinicalTrials.gov identifier: NCT00005596; and P9906, ClinicalTrials.gov
identifier: NCT00005603). Patients were excluded from this study as
a result of insufficient materials for sequencing or missingness of de-
mographic and clinical characteristics. Of children who were enrolled in
COG P9900 and AALL0232 frontline trials, 75.1% and 70.3% were in-
cluded in TP53 genetic analyses, respectively (Data Supplement).

Germline DNAwas extracted from bone marrow or peripheral blood
samples during clinical remission. Genetic ancestry—European, African,
Native American, and Asian—was estimated with STRUCTURE (version
2.3.4),37 from genome-wide polymorphism genotypes as described
previously.18,38,39

Similar to approaches described previously,24 the Exome Aggregation
Consortium (ExAC)40 data set of whole-exome sequencing–based variants of
60,706 individuals was used as the non-ALL control cohort because the
prevalence of childhood ALL is exceedingly low in the general population.14,41

These non-ALL controls were not selected to match patients with ALL by age
and gender because these factors are unlikely to influence the genetic association
analyses in this study.

This study was approved by institutional review boards at St Jude
Children’s Research Hospital and COG-affiliated institutions, and informed

consent was obtained from parents, guardians, or patients and assent
from the patients, as appropriate.

TP53 Sequencing and Variant Annotation
TP53 sequencing is described in the Data Supplement. TP53 variants

were functionally annotated by using the International Agency for Re-
search on Cancer TP53 database4,42 for transcriptional activity (TA) class
and the ANNOVAR program,43 with annotation databases, including
RefSeq,44 CADD,45 Polyphen2,46,47 SIFT,48 and ClinVar.49,50 Each TP53
variant identified in the ALL cohort was curated manually and classified as
a pathogenic variant or a variant of unknown significance (VUS) to in-
dicate its potential role in the predisposition to ALL on the basis of ex-
perimentally validated p53 TA,42 bioinformatically predicted damaging
effects, and prevalence in the non-ALL control cohort (Data Supplement).

Statistical Analyses
Patients were classified as those with TP53 pathogenic variants, VUS,

or wild-type TP53. All subsequent analyses were based on the comparison
between patients with TP53 pathogenic variants and those without—that
is, TP53, VUS, or wild-type TP53—unless otherwise indicated. ALL
characteristics and demographic features included fusion genes, ploidy,
leukocyte count at diagnosis, age at diagnosis, and genetic ancestry (Data
Supplement). Treatment outcome—event-free survival (EFS) or overall
survival (OS)—was treated as a time-to-event variable and events included
relapse, second cancers, induction failure, and others—for example, death
in remission, induction death, and other events. Details of statistical analyses
are provided in the Data Supplement.

We used R (version 3.3.1; The R Foundation, Vienna, Austria) for all
statistical analyses, unless otherwise stated.

RESULTS

To comprehensively characterize TP53 genetic variation in
childhood B-ALL, we performed targeted sequencing in germline
DNA from 3,801 children with newly diagnosed ALL who were
enrolled in two consecutive COG frontline clinical trials,
AALL0232 and P9900. A single common coding variant, p.P72R
(rs1042522), was observed with an allele frequency of 66.2% in our
cohort. Excluding this common polymorphism from all sub-
sequent analyses, we identified another 49 exonic nonsilent TP53
variants in this ALL cohort, all of which were rare (allele fre-
quency , 0.5%): 40 missense, one nonsense, six frameshift, and
two inframe deletion variants (Fig 1A and Data Supplement). To
determine which rare TP53 variants are potentially pathogenic and
related to ALL risk, we examined their experimentally validated
p53 TA,42 bioinformatically predicted damaging effects on TP53
function, and the frequency of each variant in non-ALL pop-
ulations (Data Supplement). Of 40 missense rare TP53 variants, 12
resulted in the complete loss of TA as measured in eight different
promoters42 and, thus, were deemed pathogenic variants—related
to ALL risk. Eight missense variants demonstrated partial loss of
p53 function on the basis of the TA annotation, among which only
three were consistently rated as damaging by all three predic-
tion algorithms—CADD, Polyphen2, and SIFT—and therefore
included as pathogenic. Seven protein-truncating variants—one
nonsense and six frameshift variants—were directly classified as
pathogenic because they resulted in the loss of the critical core
DNA-binding domain in p53. Together, 22 variants were classified
as pathogenic, all of which were either absent or exceedingly rare in
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non-ALL populations—that is, an allele frequency of, 0.006% in
the ExAC data set with 60,706 individuals (Data Supplement)—
and 11 of which were not previously described in the International
Agency for Research on Cancer TP53 database of germline variants.
The 27 remaining TP53 variants were classified as VUS: 17 variants
displayed comparable or higher TA measurement relative to wild-
type protein, and 10 variants demonstrated partial loss of p53
activity (n = 5) or were not tested in the TA assay (n = 5), but all
had inconsistent prediction of damaging effects by three bio-
informatic algorithms. As expected, CADD scores of pathogenic
variants were significantly higher than those of VUS (Data Sup-
plement). All but two TP53 pathogenic variants were singletons
(Data Supplement). Together, of 3,801 children in this ALL cohort,
26 patients (0.7%) had a predicted pathogenic variant and 51
patients (1.3%) had a VUS in the TP53 gene. Applying the same
classification criteria on the basis of TA measurement and pre-
dicted damaging effects by these three bioinformatic algorithms,
we identified 43 TP53 pathogenic variants in 81 individuals and 96
VUS in 653 individuals in the ExAC cohort of 60,706 participants
(Data Supplement). Comparing ALL cohorts with this non-ALL
population, there was a significant over-representation of TP53
pathogenic variants in ALL (0.7% v 0.1%; odds ratio, 5.2; P = 4.83
10210), but not TP53 VUS (1.3% v 1.0%; OR, 1.3; P = .1), which

provides additional support for the causal effects of TP53 path-
ogenic variants on leukemia pathogenesis in these patients.

Fourteen of the 15 missense pathogenic variants reside in the
p53 core DNA-binding domain (Fig 1B), with two directly affecting
residues that are essential for DNA contact—that is, p.R248W and
p.R248Q—and seven—that is, p.R175H, p.C176F, p.P177R,
p.R181H, p.L194R, p.E271K, and p.R282W—located at residues
that are important for the overall architecture of the DNA-binding
surface51-53 (Data Supplement). p.R337C was the only missense
pathogenic variant that is located outside of the DNA binding
domain and is known to result in the disruption of a salt bridge at
the periphery of the p53 dimerization interface.54

We next evaluated the association of germline TP53 var-
iants and clinical features of ALL (Table 1). Children with TP53
pathogenic variants were significantly older at diagnosis (median
age, 15.5 years [interquartile range {IQR}, 12.7 to 16.6 years], 6.6
years [IQR, 3.0 to 12.2 years], and 7.3 years [IQR, 3.5 to 13.5 years]
for patients with pathogenic variants, VUS, or wild-type TP53,
respectively; P, .001) and had significantly lower leukocyte count
at presentation than did those with a VUS or wild-type genotype
(P = .006). Of 26 patients who carried a germline TP53 patho-
genic variant, 17 (65.4%) exhibited hypodiploidy in ALL blasts
(11 patients with , 44 chromosomes and six with masked
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hypodiploidy), and one patient had BCR-ABL1 fusion. In contrast, hy-
podiploidALLwas only present in 3.9%and 1.2%of childrenwith TP53
VUS or wild-type genotype, respectively. The prevalence of TP53
pathogenic variants did not differ by genetic ancestry (P = .9).

Finally, we examined the relationship between germline TP53
variants and treatment outcomes of ALL therapy. In the COG
AALL0232 cohort, the presence of a TP53 pathogenic variant was
associated with a significantly lower EFS and OS compared with
patients without pathogenic variants (EFS: hazard ratio [HR], 2.8;
95% CI, 1.6 to 5.2; P = .0007; and OS: HR, 3.1; 95% CI, 1.5 to 6.7;
P = .003; Fig 2A and Data Supplement). In multivariable analyses,
TP53 pathogenic variants remained prognostic after adjusting for
ancestry, age and leukocyte count at diagnosis, and minimal residual

disease at the end of remission induction therapy (EFS: HR, 3.4;
95% CI, 1.8 to 6.3; P = .0002; and OS: HR, 2.9; 95% CI, 1.3 to 6.2;
P = .007). Adding hypodiploidy to this regression model diminished
the prognostic value of germline TP53 risk variants (P = .2 and .9
for EFS and OS, respectively). Similarly, within patients with
hypodiploid ALL, EFS or OS did not differ significantly between
those with versus those without TP53 pathogenic variants (Data
Supplement); however, when we restricted the analyses in pa-
tients with nonhypodiploid ALL—that is, normal karyotype or
hyperdiploidy—TP53 pathogenic variants again were associated
with poor prognosis (EFS: HR, 5.4; 95% CI, 2.2 to 13.0; P = .0002;
and OS: HR, 6.1; 95% CI, 2.3 to 16.6; P = .0004; Fig 2B and
Data Supplement). When we limited analyses to patients in the
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AALL0232 cohort who participated in different treatment arms of
this clinical trial,35 TP53 pathogenic variants remained signifi-
cantly associated with survival, even after adjusting for differences
in therapy (EFS: HR, 4.1; 95% CI, 1.5 to 11.2; P = .005; and OS:
HR, 5.4; 95% CI, 1.7 to 17.4; P = .004), which suggests that
the negative prognostic value of TP53 pathogenic variants tran-
scended various treatment regimens. Of particular note was the
markedly high risk of second cancers among patients in the
AALL0232 cohort who carried TP53 pathogenic variants com-
pared with those with TP53 VUS or wild-type TP53 (5-year
cumulative incidence of 25.1% [95% CI, 1.5% to 48%] versus
0.7% [95% CI, 0.4% to 1.1%]; P = 5.3 3 10211; Fig 2C). In the
COG P9900 cohort, four patients harbored TP53 pathogenic
variants, three of whom experienced an event—ALL relapse,
second cancer, and death in remission, respectively—and both
EFS and OS were significantly worse than in patients with TP53
VUS or wild-type genotype (EFS: HR, 7.1; 95% CI, 2.3 to 22.5;
P = .0008; and OS: HR, 14.2; 95% CI, 4.4 to 46.2; P = 1.13 1025;
Data Supplement).

Combining the COG AALL0232 and P9900 cohorts, we again
observed that TP53 pathogenic variants were strongly associated
with poorer prognosis after adjusting for treatment protocols (EFS:
HR, 4.2; 95% CI, 2.4 to 7.4; P = 4.53 1027; and OS: HR, 3.9; 95%
CI, 2.1 to 7.5; P = 3.1 3 1025; complete results of univariable and
multivariable analyses are provided in the Data Supplement). Of 26
patients with TP53 pathogenic variants, 14 experienced an event,
with five ALL relapses (36% of all events) and five second cancers
(36%). This pattern of events was dramatically different from that

in patients with wild-type TP53 or VUS, for whom ALL relapse
accounted for 75% of all events, with only 4% as second cancers
(P = 1.2 3 1027; Fig 3A). In fact, within hypodiploid ALL patients
who experienced an event, the frequency of second cancer was
significantly higher in those with TP53 pathogenic variants than in
those without (50% v 5%; P = .01; Fig 3B), which additionally
suggests that germline TP53 variation, instead of hypodiploid ALL,
was the underlying cause of second cancers in these patients. TP53
genotype status was not associated with minimal residual disease in
either the COG AALL0232 or COG P9900 cohort (Table 1).

DISCUSSION

ALL risk variants in TP53 exhibited a highly restrictive pattern of
distribution: of the 15 missense risk variants, all but one cluster
within the critical DNA-binding domain, which is consistent with
TP53 somatic or germline mutations in other cancers4,52,53,55-57

and suggests that the loss or alteration of the DNA-binding
function of TP53 is crucial for leukemogenesis. A substantial
proportion of TP53 germline variants in our ALL cohort were
classified as VUS because they did not cause changes in p53 TA per
in vitro assay. Arguably, this stringent criterion might have led to
plausibly false negatives for pathogenic variant classification. For
example, the p.R283C variant, located in the C-terminal helix of
the p53 core DNA-binding domain and directly involved in in-
teractions with the DNA major groove,52,58 was predicted to be
damaging and deleterious by Polyphen2 and SIFT, respectively;
however, we elected to conservatively define it as VUS because the
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tients who carry TP53 pathogenic variants and
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transcriptional activity of this mutant protein did not differ from that
of the wild-type p53. In our childhood ALL cohorts, patients with
a TP53 VUS did not have significantly worse EFS or OS compared
with patients with wild-type TP53 (Data Supplement). In patients
who experienced events, the type of event did not differ between
TP53 wild-type and VUS either (Data Supplement), which suggests
that VUS as a groupmay have more subtle biologic effects than TP53
pathogenic variants. Nonetheless, the number of patients with a TP53
VUS is still small in our cohorts and additional characterization is
warranted to determine their functional consequences.

The cosegregation of germline TP53 pathogenic variants with
hypodiploid ALL was striking and suggested that an inherent defect
in p53-meditated DNA repair may be the cause of the global DNA
instability and aneuploidy phenotype, or may enhance the ability
of cells to tolerate aneuploidy. However, hyperdiploid ALL is not
significantly enriched in patients who carry TP53 pathogenic
variants,59,60 and aneuploidy is not common in other LFS-related
cancers,6,8 which points to possible interactions between germline
TP53 variants and somatic genomic lesions that are unique in
hypodiploid ALL during leukemogenesis. Of interest, a high fre-
quency of somatic TP53mutations has also been described in adults
with hypodiploid ALL.61 The negative impact of germline TP53
variants on ALL prognosis is confounded by the concomitant hy-
podiploidy, which, by itself, is associated with an elevated risk of
relapse62-66; however, of 2,059 patients with normal ploidy or
hyperdiploid ALL, children with TP53 pathogenic variants still
experienced significantly worse outcomes than did those without.
This result points to the independent prognostic value of TP53
variants, although our sample size is relatively limited for a definitive
statistical analysis. Comparing patients who were enrolled in the
COG frontline protocols who were included with those excluded in
this genetic study, we did not observe notable differences in clinical
features or outcomes in the COG P9900 cohort (Data Supplement);
however, patients in the AALL0232 cohort who were not in the
current study demonstrated a slightly lower survival than did those
who were included. Although we cannot pinpoint the exact cause of
this bias, we argue that it would be unlikely to confound our analyses
given the dramatic effects of TP53 variants on prognosis.

TP53 pathogenic variants are likely to result in the ablation of
the p53-mediated DNA damage response and, thus, general re-
sistance to antileukemia agents, as observed in patients with re-
fractory or relapsed ALL.67 In contrast, the high frequency of
second cancers in patients who carry TP53 pathogenic variants is
likely a result of the increased propensity for tumorigenesis, as seen
in LFS,68 but also raises the possibility of an added risk that can be
attributed to genotoxic therapy received during ALL treatment in
this patient population. In fact, of the five patients with TP53
pathogenic variants who also had second cancers, two received
irradiation therapy, including total body irradiation, and both

subsequently developed solid tumors (Data Supplement). The
exact life-long risk of second cancer in these patients is difficult to
ascertain as many patients might have succumbed to relapsed ALL
before they had the chance to develop second cancers.

Whereas germline TP53 variants have been reported pre-
viously in children with hypodiploid ALL,11 our current study has
substantially expanded the spectrum of germline TP53 risk variants
that are related to childhood ALL by systematically identifying
loss-of-function variants in large nationwide ALL cohorts. Our
observation that TP53 risk variants are strongly associated with
treatment outcome warrants clinical consideration, in particular,
pre-emptive surveillance for second cancers. As a result of the high
risk of treatment failure, patients with hypodiploid ALL frequently
undergo hematopoietic stem cell transplantation. The risk of in-
ducing second cancers with total body irradiation–based preparative
regimens presents a significant clinical conundrum. Questions
remain, though, as to whether other nongenotoxic therapeutic
strategies are needed for this group of patients—for example,
immunotherapies. In conclusion, our findings strongly point
to germline TP53 variants—and inherited genetic variation in
general—as an important determinant of ALL leukemogenesis
and treatment response.
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